

    
      Navigation

      
        	
          index

        	
          next |

        	bootmachine 0.6.0 documentation 
 
      

    


    
      
          
            
  
Welcome to Bootmachine’s documentation!

Contents:



	bootmachine
	Configuration Management Tools

	Providers

	Distros





	Motivation

	Booting

	Provisioning with Configuration Management Tools

	What’s Next

	Installation

	bootmachine  overview and usage

	Bootmachine Changelog
	0.6.1 (development)

	0.6.0 (25.05.2013)

	0.5.9 (25.10.2012)

	0.5.4, 0.5.5, 0.5.6, 0.5.7, 0.5.8 (13.09.2012)

	0.5.3 (13.09.2012)

	0.5.2 (13.08.2012)

	0.5.1 (23.07.2012)

	0.5.0 (23.07.2012) – Initial release.












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2012, Thomas Schreiber.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	bootmachine 0.6.0 documentation 
 
      

    


    
      
          
            
  
bootmachine

Bootmachine is a bootstrapping tool for securely provisioning
virtual servers up until the point where customized configuration
management begins.

The bootmachine’s goal is to allow getting started with, maintenance
of, and exploring new stack options through a simple, pluggable and highly
customizable interface.

[image: buildstatus] [http://travis-ci.org/#!/rizumu/bootmachine]

[image: Latest PyPI version]
 [https://crate.io/packages/bootmachine/][image: Number of PyPI downloads]
 [https://crate.io/packages/bootmachine/]
Configuration Management Tools

Currently supported:



	Salt http://saltstack.org

	Write your own






Next in the queue:



	Chef http://www.opscode.com/chef/

	Puppet http://puppetlabs.com/

	Write your own









Providers

Currently supported:



	Rackspace Openstack Compute API v2 via python-novaclient

	Non-rackspace Openstack Compute via python-novaclient

	Rackspace Openstack Compute API v1 via openstack.compute (deprecated) http://www.rackspace.com/cloud/

	Write your own






Next in the queue:



	Amazon EC2 via boto https://aws.amazon.com/ec2/

	Virtualbox / Vagrant http://vagrantup.com/

	Write your own









Distros

Currently supported:



	Arch Linux

	Ubuntu

	Fedora

	Debian

	Write your own






Next in the queue:



	FreeBSD

	Gentoo

	openSUSE

	CentOS

	RHEL

	Write your own






Documentation about the usage and installation of the bootmachine
can be found at: http://bootmachine.readthedocs.org

The source code and issue tracker can be found on GitHub:
https://github.com/rizumu/bootmachine







          

      

      

    


    
         Copyright 2012, Thomas Schreiber.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	bootmachine 0.6.0 documentation 
 
      

    


    
      
          
            
  
Motivation

There are many options when it comes to server providers,
configuration management tools, and distros. The bootmachine’s goal is
to reduce maintenance and overhead when managing a server stack, but
through its pluggable api it also simplifies exploring new options.

The bootmachine is written in PEP8 compliant Python and is at its most
basic, simply a specialized Fabric libary.

Providers:



	Rackspace Openstack API v2

	Rackspace Openstack API v1 (deprecated)

	Amazon EC2 (forthcoming)

	Write your own..






Configurators:



	Salt http://saltstack.org/

	Chef (forthcoming)

	Puppet (forthcoming)

	Write your own...






Distros:



	Arch Linux

	Fedora 16+17

	Ubuntu 12.04 LTS

	Debian 6

	Gentoo 11.0 (forthcoming)

	OpenSUSE 12 (forthcoming)

	CentOS 6.2 (forthcoming)

	Red Hat Enterprise Linux 6 (forthcoming)

	write your own...






First, the bootmachine boots each new server as defined in its
settings.py using the distro and provider of your choice. Next it
bootstaps setting up the distro and installs the configuration
management tool of your choice. Finally it uses the configuration
management tool to provision the server to a secure state. The
supplied states/recipes handle iptables, ssh, users, and not much
more. The idea is to keep things simple, but it is up to you to
customize the stack to your preferences.

For example, you could create a new stack with four Arch Linux servers
using the Rackspace api. After defining your settings and running fab
bootmachine. Salt is installed and the server is configured as the
states tell it to be. The stack could contain a loadbalancer, cache,
application, and database server. It is up to you to define the
individual roles, but the bootmachine gets you as close as it can to a
secure and ready system before personalization takes over.




Booting

Bootmachine simplifies the initial boot phase of creating new servers,
by reading configuration from settings.SERVERS. Choose from the
built-in cloud providers, or write a custom settings.PROVIDER_MODULE.


Note

Write a custom backed if your intention is to support local
virtual machines, an not yet included cloud provider, or hardware
in a private datacenter. If your module is generic enough to share
with others, please consider contributing it back to the
bootmachine.






Provisioning with Configuration Management Tools

The bootmachine reads the settings file and checks for servers that are
not yet booted. It will then boot each new server, with its defined
distro and size, and next bootstrap the configuration management tool
of your choice.


Note

The bootmachine supports a stack with multiple distros, but it is
assumed that only one provider and one configuration
management tool will be used per stack.

Although you may boot a mixture of distro types, it is advised
against because this will most likely create unnecessary
complexity down the road. Mainly because the configuration
management tools could have conflicting versions per distro.
If you know what your doing than go ahead, otherwise be warned.



After your configuration management tool of choice is bootstrapped on
the new servers, the last step is provisioning the server to a secure
state. For this it following community approved best-practices in the
supplied salt-states, chef/puppet recipes, etc.

Bootmachine adheres to the Slicehost provisioning documentation and
the Arch Linux wiki:



	Slicehost provisioning docs: http://articles.slicehost.com/ubuntu-10

	Arch Linux wiki : https://wiki.archlinux.org/









What’s Next

The function of the bootmachine is to create a new server, or cluster of
servers, based on a configuration file and provision them into a secure
state. It is the job of a configuration management tool to setup the
server for its real task, such as application server, database server,
loadbalancer, etc.

Every application is different, have fun.





          

      

      

    


    
         Copyright 2012, Thomas Schreiber.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	bootmachine 0.6.0 documentation 
 
      

    


    
      
          
            
  
Installation

Bootmachine runs locally on OSX or GNU/Linux.

First clone the bootmachine to an easily accessible folder on your
local machine. The recommended place is /srv/ but any
folder in your home directory would work just the same.

If you are unfamiliar with Python’s pip or virtualenv packages,
understand them, at least a little, before proceeding:

* http://pypi.python.org/pypi/virtualenv
* http://pypi.python.org/pypi/pip





If you don’t already have a virtualenv that you would like to use,
first create a new virtualenv for the bootmachine:

$ cd ~/.virtualenvs/
$ virtualenv --no-site-packages --distribute bootmachine
$ source bootmachine/bin/activate





Install the bootmachine:

$ pip install bootmachine





From within the directory you want the configuration files to be
copied to, execute the following command:

$ bootmachine-admin start





Now, customize the example settings file and for your stack. A
suggestion is to instead store these private files a private git
repository.

Some info on choosing the type of encryption for your ssh key:

https://wiki.archlinux.org/index.php/SSH_Keys#Generating_an_SSH_key_pair
http://pthree.org/2011/02/17/elliptic-curve-cryptography-in-openssh/






Note

Elliptic curve cryptography is excluded from Fedora
presumably due to patent concerns. Check Fedora 18 once released.
http://comments.gmane.org/gmane.linux.redhat.fedora.legal/1576



To use Rackspace’s openstack api v2 you must also set some environment
variables for your interactive shell. The recommended installation is
to add the following to your ~/.bashrc:

export OS_USERNAME=""  # your rackspace username
export OS_PASSWORD=""  # your rackspace password
export OS_TENANT_NAME=""  # your rackspace accountid
export OS_AUTH_URL="https://identity.api.rackspacecloud.com/v2.0/"
export OS_REGION_NAME="DFW"
export OS_COMPUTE_API_VERSION="2"





For Rackspace api v1 (deprecated):

export OPENSTACK_COMPUTE_USERNAME=""  # your rackspace username
export OPENSTACK_COMPUTE_APIKEY=""  # your rackspace apikey





The same is true for the Amazon boto api:

export AWS_ACCESS_KEY_ID=""  # your amazon access key id
export AWS_SECRET_ACCESS_KEY=""  # your amazon secret access key









          

      

      

    


    
         Copyright 2012, Thomas Schreiber.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	bootmachine 0.6.0 documentation 
 
      

    


    
      
          
            
  
bootmachine  overview and usage

The bootmachine-admin start command simply copies two files
to the current working directory. A standard Fabric fabfile.py and
a settings.py for which you need to customize. Additionally it
copies over the configuration folder containing the initial
states/recipes to configure the servers.

After customizing your settings, all it takes to convert bare metal
servers from aluminium into rhodium is one simple Fabric command:

$ fab bootmachine





Internally this does two things. First provider.bootem checks if
there are any non-booted servers listed in the
settings.PROVIDER_BACKENDS. If provider.boot finds a
non-booted server, it will boot it in parallel. In the meantime
provider.bootem queries the provider to ensure that all servers are
ACTIVE before continuing.

Second, after all servers are found to be active, the bootstrap
method is called to check if there are any servers which have not yet
been bootstrapped. These servers are then bootstrapped in parallel.


Note

These commands can also be run separately:

$ fab boot
$ fab each bootstrap_distro
$ fab each bootstrap_configurator
$ fab master configure







After provisioning is complete you can manually login, with the user
credentials and port as defined in your settings.py, to the machine
using the following format:

$ ssh -p {port} {username}@{ip}





To list the details for your new machines, including
ip addresses:

$ fab provider





Or if you already have openstack-compute or python-novaclient
installed, you could just as easily:

$ openstack-compute list
     or
$ nova list





All available commands can be seen by typing:

$ fab -l  # which is short for fab --list









          

      

      

    


    
         Copyright 2012, Thomas Schreiber.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	bootmachine 0.6.0 documentation 
 
      

    


    
      
          
            
  
Bootmachine Changelog


0.6.1 (development)

CHANGES:


	add support for arch20147 with pacman.

	drop yaourt complexities.






0.6.0 (25.05.2013)

CHANGES:


	add support for debian7, arch20132, fedora18 and ubuntu1304
rackspace images.

	drop support for arch201208 and fedora16 rackspace images

	bump Arch salt version to 0.11.1

	require the salt package and release version in the settings, when
building salt on a rolling release such as Arch.

	Arch 2012.08 is now a pure systemd installation

	nova client now requires specifying pub and priv networks
during a build. sleep longer during boot stage to prevent
extra api calls to rackspace.

	refactor salt states and move them to a new folder.

	add support for changing the remote directory of states and pillars.

	bump Fabric to 1.5.1, later to 1.6 (which helpfully resolved some
rebooting issues)

	bump python-novaclient to 2.13.0

	bump Jinja2 to 2.7






0.5.9 (25.10.2012)

CHANGES:


	resolve issue #8 by using pgrep to check if
salt-master/minion daemons instead of relying
on Fabric.

	deprecate explicit support for rackspace api v1






0.5.4, 0.5.5, 0.5.6, 0.5.7, 0.5.8 (13.09.2012)

CHANGES:


	fix setup.py and use a MANIFEST.in to include configuration files






0.5.3 (13.09.2012)

CHANGES:


	some fixes to the provided salt-states






0.5.2 (13.08.2012)

NEW FEATURES:


	debian 6 is now supported on rackspace with salt



CHANGES:
* the fab all task has been renamed to fab each, mostly to


avoid the name clash with the Python’s global all() method.



	the fab provision task has been renamed to fab bootstrap and
a new fab configure task has been added to better clarify
intent. Additionaly a thorough refactoring of core.py has taken
place.

	instead of aborting, a y/n continue prompt has been added
when a rackspace server found to be not ACTIVE.






0.5.1 (23.07.2012)

NEW FEATURES:


	add a test runner that runs all builds, logs output and scans for
failures

	add a requirements.txt, so installing in a new virtualenv is simpler
when working on the bootmachine

	friendlier time counter while waiting for servers to boot

	add a warning prompt to require confirmation before deleting
servers, with an option to force.

	changed fab all reboot_servers() to fab reboot_server(servername)

	added an internal __set_ssh_vars(valid_object) method. After
performing a few sanity tests this method adds reliable ssh
variables to the passed in object (env or server).



SALT:


	add a bootmachine-pillar/deploymachine.sls as an example of where
post bootmachine pillar data can be stored. Bootmachine boots your
servers, deploymachine is the states for your custom stack.

	fix require relationship between users/ssh/iptables states

	fix iptables issues and simplify the salt-state



ARCH LINUX:


	upgrade salt-state for grub to install and use grub2

	fix the recent glibc update that broke the build

	add a salt-state for the rc.conf

	add a way for the saltmaster to open a port for newly booted minions

	use hostname instead of ip in the salt-minion config

	follow netcfg best practice, by removing networking settings from rc.conf






0.5.0 (23.07.2012) – Initial release.

The bootmachine grew out of the desire to automate the launching,
configuration, and scaling of a stack of servers in the cloud.

The provider, configurator, and distro functionality has been written
in such a way that each module is pluggable. Therefore customization
and extension can be achieved with little effort.

The bootmachine has existing modules for Rackspace, Salt and a handful
of distros. Additional modules could easily be written to support EC2, Chef,
Puppet, and other distros.

Any contributions to the core or submissions of new modules for the
contrib will be much appreciated. I’d like to see this project allow
developers to switch between providers with ease, simplify the process
of configuring a cloud stack, and encourage experimentation with new
distros.

This is not a 1.0 yet, but please give it a try. It has been working
well for me and I’m excited about this first public release.

Github page: https://github.com/rizumu/bootmachine







          

      

      

    


    
         Copyright 2012, Thomas Schreiber.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	bootmachine 0.6.0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2012, Thomas Schreiber.
      Created using Sphinx 1.2.2.
    

  _static/minus.png





_static/comment.png





_static/up.png





_static/plus.png





_static/comment-close.png





_static/comment-bright.png





_static/file.png





_static/up-pressed.png





_static/ajax-loader.gif





search.html


    
      Navigation


      
        		
          index


        		bootmachine 0.6.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2012, Thomas Schreiber.
      Created using Sphinx 1.2.2.
    

  

troubleshooting.html


    
      Navigation


      
        		
          index


        		bootmachine 0.6.0 documentation »

 
      


    


    
      
          
            
  
troubleshooting tips


On rackspace a server can become stuck in the UNKNOWN or ERROR phase
and the bootmachine will be unable to perform most commands. In the
future repairing this may be handled automatically by the bootmachine,
but at this time it is best to manually delete the server. An
alternative to waiting for rackspace to release the server, wait time
can be more than a few hours, is remove the problematic server from
your settings file and add it again. Make sure to select a different
server name for the replacement.






          

      

      

    


    
        © Copyright 2012, Thomas Schreiber.
      Created using Sphinx 1.2.2.
    

  

_static/down-pressed.png





_static/down.png





